61,132 research outputs found

    Relativistic r-modes in Slowly Rotating Neutron Stars: Numerical Analysis in the Cowling Approximation

    Get PDF
    We investigate the properties of relativistic rr-modes of slowly rotating neutron stars by using a relativistic version of the Cowling approximation. In our formalism, we take into account the influence of the Coriolis like force on the stellar oscillations, but ignore the effects of the centrifugal like force. For three neutron star models, we calculated the fundamental rr-modes with lâ€Č=m=2l'=m=2 and 3. We found that the oscillation frequency σˉ\bar\sigma of the fundamental rr-mode is in a good approximation given by σˉ≈Îș0Ω\bar\sigma\approx \kappa_0 \Omega, where σˉ\bar\sigma is defined in the corotating frame at the spatial infinity, and Ω\Omega is the angular frequency of rotation of the star. The proportional coefficient Îș0\kappa_0 is only weakly dependent on Ω\Omega, but it strongly depends on the relativistic parameter GM/c2RGM/c^2R, where MM and RR are the mass and the radius of the star. All the fundamental rr-modes with lâ€Č=ml'=m computed in this study are discrete modes with distinct regular eigenfunctions, and they all fall in the continuous part of the frequency spectrum associated with Kojima's equation (Kojima 1998). These relativistic rr-modes are obtained by including the effects of rotation higher than the first order of Ω\Omega so that the buoyant force plays a role, the situation of which is quite similar to that for the Newtonian rr-modes.Comment: 22 pages, 8 figures, accepted for publication in Ap

    Alternative experimental evidence for chiral restoration in excited baryons

    Full text link
    Given existing empirical spectral patterns of excited hadrons it has been suggested that chiral symmetry is approximately restored in excited hadrons at zero temperature/density (effective symmetry restoration). If correct, this implies that mass generation mechanisms and physics in excited hadrons is very different as compared to the lowest states. One needs an alternative and independent experimental information to confirm this conjecture. Using very general chiral symmetry arguments it is shown that strict chiral restoration in a given excited nucleon forbids its decay into the N \pi channel. Hence those excited nucleons which are assumed from the spectroscopic patterns to be in approximate chiral multiplets must only "weakly" decay into the N \pi channel, (f_{N^*N\pi}/f_{NN\pi})^2 << 1. However, those baryons which have no chiral partner must decay strongly with a decay constant comparable with f_{NN\pi}. Decay constants can be extracted from the existing decay widths and branching ratios. It turnes out that for all those well established excited nucleons which can be classified into chiral doublets N_+(1440) - N_-(1535), N_+(1710) - N_-(1650), N_+(1720) - N_-(1700), N_+(1680) - N_-(1675), N_+(2220) - N_-(2250), N_+(?) - N_-(2190), N_+(?) - N_-(2600), the ratio is (f_{N^*N\pi}/f_{NN\pi})^2 ~ 0.1 or much smaller for the high-spin states. In contrast, the only well established excited nucleon for which the chiral partner cannot be identified from the spectroscopic data, N(1520), has a decay constant into the N\pi channel that is comparable with f_{NN\pi}. This gives an independent experimental verification of the chiral symmetry restoration scenario.Comment: 4 pp. A new footnote with an alternative proof of impossibility of parity doublet decay into pi + N is added. To appear in Phys. Rev. Let

    Effect of Plasma Irradiation on CdI2Cd I_2 films

    Full text link
    The effect of plasma irradiation is studied systematically on a 4H polytype (002) oriented CdI2{\rm CdI_2} stoichiometric film having compressive residual stress. Plasma irradiation was found to change the orientation to (110) of the film at certain moderate irradiation distances. A linear decrease in grain size and residual stress was observed with decreasing irradiation distance (or increasing ion energy) consistent with both structural and morphological observations. The direct optical energy gap Eg{\rm E_g} was found to increase linearly at the rate 15ÎŒeV/atm{\rm 15\mu eV/atm} with the compressive stress. The combined data of present compressive stress and from earlier reported tensile stress show a consistent trend of Eg{\rm E_g} change with stress. The iodine-iodine distance in the unit cell could be responsible for the observed change in Eg{\rm E_g} with stress.Comment: 13 pages and 10 fi

    The triton and three-nucleon force in nuclear lattice simulations

    Get PDF
    We study the triton and three-nucleon force at lowest chiral order in pionless effective field theory both in the Hamiltonian and Euclidean nuclear lattice formalism. In the case of the Euclidean lattice formalism, we derive the exact few-body worldline amplitudes corresponding to the standard many-body lattice action. This will be useful for setting low-energy coefficients in future nuclear lattice simulations. We work in the Wigner SU(4)-symmetric limit where the S-wave scattering lengths {1}S{0} and {3}S{1} are equal. By comparing with continuum results, we demonstrate for the first time that the nuclear lattice formalism can be used to study few-body nucleon systems.Comment: 16 pages, 4 figure

    The Uehling correction to the energy levels in a pionic atom

    Full text link
    We consider a correction to energy levels in a pionic atom induced by the Uehling potential, i.e., by a free electron vacuum-polarization loop. The calculation is performed for circular states (l=n-1). The result is obtained in a closed analytic form as a function of Zα Z\alpha and the pion-to-electron mass ratio. Certain asymptotics of the result are also presented

    Departure from the constant-period ephemeris for the transiting exoplanet WASP-12 b

    Get PDF
    Most hot Jupiters are expected to spiral in towards their host stars due to transfering of the angular momentum of the orbital motion to the stellar spin. Their orbits can also precess due to planet-star interactions. Calculations show that both effects could be detected for the very-hot exoplanet WASP-12 b using the method of precise transit timing over a timespan of the order of 10 yr. We acquired new precise light curves for 29 transits of WASP-12 b, spannning 4 observing seasons from November 2012 to February 2016. New mid-transit times, together with literature ones, were used to refine the transit ephemeris and analyse the timing residuals. We find that the transit times of WASP-12 b do not follow a linear ephemeris with a 5 sigma confidence level. They may be approximated with a quadratic ephemeris that gives a rate of change in the orbital period of -2.56 +/- 0.40 x 10^{-2} s/yr. The tidal quality parameter of the host star was found to be equal to 2.5 x 10^5 that is comparable to theoretical predictions for Sun-like stars. We also consider a model, in which the observed timing residuals are interpreted as a result of the apsidal precession. We find, however, that this model is statistically less probable than the orbital decay.Comment: Accepted for publication in A&A Letter

    Regge approach to charged-pion photoproduction at invariant energies above 2 GeV

    Get PDF
    A Regge model with absorptive corrections is employed in a global analysis of the world data on positive and negative pion photoproduction for photon energies from 3 to 8 GeV. In this region resonance contributions are expected to be negligible so that the available experimental information on differential cross sections and single polarization observables at -t \leq 2 GeV^2 allows us to determine the non-resonant part of the reaction amplitude reliably. The model amplitude is then used to predict observables for photon energies below 3 GeV. Differences between our predictions and data in this energy region are systematically examined as possible signals for the presence of excited baryons. We find that the data available for the polarized photon asymmetry show promising resonance signatures at invariant energies around 2 GeV. With regard to differential cross sections the analysis of negative pion photoproduction data, obtained recently at JLab, indicates likewise the presence of resonance structures around 2 GeVComment: misprint in Table 3 corrected; reference adde

    The social, cosmopolitanism and beyond

    Get PDF
    First, this article will outline the metaphysics of ‘the social’ that implicitly and explicitly connects the work of lassical and contemporary cosmopolitan sociologists as different as Durkheim, Weber, Beck and Luhmann. In a second step, I will show that the cosmopolitan outlook of classical sociology is driven by exclusive differences. In understanding human affairs, both classical sociology and contemporary cosmopolitan sociology reflect a very modernist outlook of epistemological, conceptual, methodological and disciplinary rigour that separates the cultural sphere from the natural objects of concern. I will suggest that classical sociology – in order to be cosmopolitan – is forced (1) to exclude non-social and non-human objects as part of its conceptual and methodological rigour, and (2) consequently and methodologically to rule out the non-social and the non-human. Cosmopolitan sociology imagines ‘the social’ as a global, universal explanatory device to conceive and describe the non-social and non-human. In a third and final step the article draws upon the work of the French sociologist Gabriel Tarde and offers a possible alternative to the modernist social and cultural other-logics of social sciences. It argues for a inclusive conception of ‘the social’ that gives the non-social and non-human a cosmopolitan voice as well
    • 

    corecore